Parallel evolution of segmentation by co-option of ancestral gene regulatory networks.

نویسنده

  • Ariel D Chipman
چکیده

Different sources of data on the evolution of segmentation lead to very different conclusions. Molecular similarities in the developmental pathways generating a segmented body plan tend to suggest a segmented common ancestor for all bilaterally symmetrical animals. Data from paleontology and comparative morphology suggest that this is unlikely. A possible solution to this conundrum is that throughout evolution there was a parallel co-option of gene regulatory networks that had conserved ancestral roles in determining body axes and in elongating the anterior-posterior axis. Inherent properties in some of these networks made them easily recruitable for generating repeated patterns and for determining segmental boundaries. Phyla where this process happened are among the most successful in the animal kingdom, as the modular nature of the segmental body organization allowed them to diverge and radiate into a bewildering array of variations on a common theme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene regulatory networks in the evolution and development of the heart.

The heart, an ancient organ and the first to form and function during embryogenesis, evolved by the addition of new structures and functions to a primitive pump. Heart development is controlled by an evolutionarily conserved network of transcription factors that connect signaling pathways with genes for muscle growth, patterning, and contractility. During evolution, this ancestral gene network ...

متن کامل

Evolutionary Design of Gene Networks: Forced Evolution by Genomic Parasites

The co-evolution of species with their genomic parasites (transposons) is thought to be one of the primary ways of rewiring gene regulatory networks (GRNs). We develop a framework for conducting evolutionary computations (EC) using the transposon mechanism. We find that the selective pressure of transposons can speed evolutionary searches for solutions and lead to outgrowth of GRNs (through co-...

متن کامل

Co-option of an Ancestral Hox-Regulated Network Underlies a Recently Evolved Morphological Novelty.

The evolutionary origins of complex morphological structures such as the vertebrate eye or insect wing remain one of the greatest mysteries of biology. Recent comparative studies of gene expression imply that new structures are not built from scratch, but rather form by co-opting preexisting gene networks. A key prediction of this model is that upstream factors within the network will activate ...

متن کامل

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

Predicting Ancestral Segmentation Phenotypes from Drosophila to Anopheles Using In Silico Evolution

Molecular evolution is an established technique for inferring gene homology but regulatory DNA turns over so rapidly that inference of ancestral networks is often impossible. In silico evolution is used to compute the most parsimonious path in regulatory space for anterior-posterior patterning linking two Dipterian species. The expression pattern of gap genes has evolved between Drosophila (fly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BioEssays : news and reviews in molecular, cellular and developmental biology

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2010